Local structures in ionic liquids probed and characterized by microscopic thermal diffusion monitored with picosecond time-resolved Raman spectroscopy.

نویسندگان

  • Kyousuke Yoshida
  • Koichi Iwata
  • Yoshio Nishiyama
  • Yoshifumi Kimura
  • Hiro-o Hamaguchi
چکیده

Vibrational cooling rate of the first excited singlet (S(1)) state of trans-stilbene and bulk thermal diffusivity are measured for seven room temperature ionic liquids, C(2)mimTf(2)N, C(4)mimTf(2)N, C(4)mimPF(6), C(5)mimTf(2)N, C(6)mimTf(2)N, C(8)mimTf(2)N, and bmpyTf(2)N. Vibrational cooling rate measured with picosecond time-resolved Raman spectroscopy reflects solute-solvent and solvent-solvent energy transfer in a microscopic solvent environment. Thermal diffusivity measured with the transient grating method indicates macroscopic heat conduction capability. Vibrational cooling rate of S(1) trans-stilbene is known to have a good correlation with bulk thermal diffusivity in ordinary molecular liquids. In the seven ionic liquids studied, however, vibrational cooling rate shows no correlation with thermal diffusivity; the observed rates are similar (0.082 to 0.12 ps(-1) in the seven ionic liquids and 0.08 to 0.14 ps(-1) in molecular liquids) despite large differences in thermal diffusivity (5.4-7.5 × 10(-8) m(2) s(-1) in ionic liquids and 8.0-10 × 10(-8) m(2) s(-1) in molecular liquids). This finding is consistent with our working hypothesis that there are local structures characteristically formed in ionic liquids. Vibrational cooling rate is determined by energy transfer among solvent ions in a local structure, while macroscopic thermal diffusion is controlled by heat transfer over boundaries of local structures. By using "local" thermal diffusivity, we are able to simulate the vibrational cooling kinetics observed in ionic liquids with a model assuming thermal diffusion in continuous media. The lower limit of the size of local structure is estimated with vibrational cooling process observed with and without the excess energy. A quantitative discussion with a numerical simulation shows that the diameter of local structure is larger than 10 nm. If we combine this lower limit, 10 nm, with the upper limit, 100 nm, which is estimated from the transparency (no light scattering) of ionic liquids, an order of magnitude estimate of local structure is obtained as 10 nm < L < 100 nm, where L is the length or the diameter of the domain of local structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local structure formation in alkyl-imidazolium-based ionic liquids as revealed by linear and nonlinear Raman spectroscopy.

We show several pieces of Raman spectroscopic evidence that are indicative of local structure formation in imidazolium-based ionic liquids. Low-frequency Raman spectra of C n mimX, where C n mim stands for 1-alkyl(C n H 2 n+1 )-3-methylimidazolium cation and X represents the anion, exhibit broad bands assignable to collective modes of local structures. Spatial distributions of coherent anti-Sto...

متن کامل

Prolonged-excitation coherent Raman spectroscopy with spectral resolution beyond the transition linewidth using two tunable picosecond dye lasers

Received June 11, 1984; accepted September 20, 1984 A time-resolved coherent anti-Stokes Raman technique is demonstrated that yields a spectral resolution beyond the linewidth obtained in spontaneous Raman spectroscopy. Two picosecond dye lasers, independently tunable with low timing jitter, are used. The coherent material excitation is generated by long pump pulses and monitored by short delay...

متن کامل

Solvation dynamics of room-temperature ionic liquids: evidence for collective solvent motion on sub-picosecond timescales

Little is known about the microscopic mechanism of solvation dynamics in room-temperature ionic liquids, but experimental studies have found that the solvent response has both sub-picosecond and nanosecond timescale components. We present the results of molecular dynamics calculations of the time-resolved fluorescence response of a chromophore in an ionic liquid, and analyze the solute–solvent ...

متن کامل

Vibrational Spectroscopy of Ionic Liquids.

Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of informa...

متن کامل

Exploring binary mixtures of protic ionic liquids Interactions, dynamics, and non-ideal behavior

Ionic liquids are organic salts that melt at low temperatures and provide a set of properties beneficial for diverse applications. These properties include good thermal stability, high ionic conductivity, low volatility and non-flammability. In this thesis protic ionic liquids have been at focus, which are of interest for use as electrolytes in next-generation proton exchange membrane fuel cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 136 10  شماره 

صفحات  -

تاریخ انتشار 2012